The Role of Information Complexity and Randomization in Representation Learning
نویسندگان
چکیده
A grand challenge in representation learning is to learn the different explanatory factors of variation behind the high dimensional data. Encoder models are often determined to optimize performance on training data when the real objective is to generalize well to unseen data. Although there is enough numerical evidence suggesting that noise injection (during training) at the representation level might improve the generalization ability of encoders, an information-theoretic understanding of this principle remains elusive. This paper presents a sample-dependent bound on the generalization gap of the cross-entropy loss that scales with the information complexity (IC) of the representations, meaning the mutual information between inputs and their representations. The IC is empirically investigated for standard multi-layer neural networks with SGD on MNIST and CIFAR-10 datasets; the behaviour of the gap and the IC appear to be in direct correlation, suggesting that SGD selects encoders to implicitly minimize the IC. We specialize the IC to study the role of Dropout on the generalization capacity of deep encoders which is shown to be directly related to the encoder capacity, being a measure of the distinguishability among samples from their representations. Our results support some recent regularization methods.
منابع مشابه
Changing the Role of Teacher according to Complexity Theory: From Representation to Facilitating Emergence
The present study seeks to rethink the role of the teacher in the teaching-learning process according to the complexity theory. First, the role of the teacher is explained in the traditional vision of Comenius and Dewey's critical insight and then the role of the teacher is discussed in the complexity theory. Then, the teacher’s image as an emergence facilitator is suggested instead of their im...
متن کاملآموزش منیفلد با استفاده از تشکیل گراف منیفلدِ مبتنی بر بازنمایی تنک
In this paper, a sparse representation based manifold learning method is proposed. The construction of the graph manifold in high dimensional space is the most important step of the manifold learning methods that is divided into local and gobal groups. The proposed graph manifold extracts local and global features, simultanstly. After construction the sparse representation based graph manifold,...
متن کامل3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.05355 شماره
صفحات -
تاریخ انتشار 2018